ORIGINAL PAPER
 
CC-BY 4.0
 
 

Determination of surface runoff from the modelled area

Tatiana Kaletova 1  ,  
 
1
Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovak Republic
2
Slovak University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava 1, Slovak Republic
Environ. Earth Ecol. 2017;1(1):61-66
KEYWORDS
TOPICS
ABSTRACT
Knowledge of surface runoff characteristics allows creating better conditions for landscape management, whether rural or urban. We focused on a determination of a volume of surface water runoff and it velocity in this paper. A direct measurement was done on an experimental area with three different slopes in a laboratory. Results of direct measurements were compared with results from a model SMODERP and NRCS method used in GIS environment. The velocity of surface runoff was also calculated by a mathematical equation used in literature. The results of surface runoff volume from GIS were equal in all cases, but not the velocity. The results of SMODERP simulation and direct measurements are similar. The calculated velocity was the highest in case of first slope, and the lowest in other cases. Differences of the velocity varied in a range 1.10 - 11.06 %. The volume of surface runoff varied more, mainly the results of NRCS Curve Number method in GIS (up to 41 %). The results show that the higher slope, the higher runoff velocity and volume is.
Corresponding author
Tatiana Kaletova   
Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovak Republic
 
REFERENCES (25):
1. Antal J (1985) Ochrana pôdy a lesotechnické meliorácie II: Návody na cvičenia. Príroda Bratislava.
2. Antal J (1999) Agrohydrológia. SPU Nitra.
3. Antal J et al. (2014) Hydrológia poľnohospodárskej krajiny. SPU Nitra.
4. Boonstra J (1994) Estimating peak runoff rates. Drainage principles and applications, pp. 111-143. ILRI Publication 16. Wageningen, The Netherlands, ILRI.
5. Chow VT (1964) Handbook of Applied Hydrology. McGraw Hill New York.
6. Dostál T, Váška J, Vrána K (2000) SMODERP — A Simulation Model of Overland Flow and Erosion Processes. Application of Physically Based Models. pp. 135-161. doi: 10.1007/978-3-662-04295-3_8.
7. Ebrahimian M, Nuruddin AAB, Soom MABM, Sood AM, Liew JN (2012) Runoff Estimation in Steep Slope Watershed with Standard and Slope-Adjusted Curve Number Methods. Polish Journal of Environmental Studies 21(5):1191-1202.
8. Govers G, Takken I, Helming K (2000) Soil roughness and overland flow. Agronomie 20:131-146. doi: 10.1051/agro:2000114.
9. Hrádek F (1981) Aplikace genetického vzorce intenzitního typu pro výpočet kulminačních prutoku Q100 na malých povodích. Praha VŠZ.
10. Hrádek F (1989) Řešení maximálního povrchového odtoku na modelovém povodí. Vysoká škola zemědělská v Praze.
11. Kavka P, Zajicek J (2013) Soil erosion model SMODERP - 1D and 2D modelling. SGEM2013 Conference Proceedings, June 16-22, 2013. pp 895-902. doi:10.5593/SGEM2013/BB2.V1/S11.037.
12. Kavka P (2011) Kalibrace a validace modelu SMODERP. České vysoké učení technické v Praze.
13. Kondrlová E, Muchová Z (2008) Priestorové analýzy v GIS pri posudzovaní ohrozenia územia vodnou eróziou. Študentská vedecká konferencia FZKI 2008, Nitra - 22. April 2008. SPU Nitra, p. 78-84.
14. Kubinský D, Weis K, Fuska J, Lehotský M, Petrovič F (2015) Changes in retention characteristics of 9 historical artificial water reservoirs near Banská Štiavnica, Slovakia. Open Geosciences 7(1):880-887. doi: 10.1515/geo-2015-0056.
15. Látečka M, Muchová Z (2005) Pozemkové úpravy a cesty Pozemkové úpravy a cesty. SPU Nitra.
16. Liu Y B, Gebremeskel S, De Smedt F, Hoffmann L and Pfister L (2006) Predicting storm runoff from different land-use classes using a geographical information system-based distributed model. Hydrological Processes 20:533–548. doi:10.1002/hyp.5920.
17. Muchová Z, Antal J (2013) Pozemkové úpravy. SPU Nitra.
18. Muchová Z, Leitmanová M, Petrovič F (2016) Possibilities of optimal land use as a consequence of lessons learned from land consolidation projects (Slovakia). Ecological engineering 90:294-306. doi:/10.1016/j.ecoleng.2016.01.018
19. Németová Z (2016) Modelové riešenie povrchového odtoku z poľnohospodársky využívaného územia. SPU Nitra.
20. Qian F, Cheng D, Ding W, Huang J, Liu J (2016) Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China. Journal of Hydrology and Hydromechanics. 64(3):237–245. doi: 10.1515/johh-2016-0029.
21. Šinka K, Muchová Z, Konc Ľ (2015) Geografické informačné systémy v priestorovom plánovaní. SPU Nitra.
22. Šinka K, Kaletová T (2013) Determining the characteristics of direct runoff from real rain using GIS environment. Acta horticulturae et regiotecturae 16(2):48-52.
23. Šinka K, Konc Ľ, Muchová Z (2015) Výpočet charakteristík povrchového odtoku s využitím GIS a modelu DesQ-MaxQ. Krajinné inžinierstvo - problémy, trendy a perspektívy 2015, meeting: 13. November 2015. p. 74-83.
24. Šinka K, Moravčík Ľ (2015) Stanovenie drsnosti povrchu pôdy a jej význam pri modelovaní vodnej erózie. Environmentálne indexy, oblasti ekologického záujmu a ekosystémové služby v krajine. VUPOP, p. 43-48.
25. Zhao N, Yu F, Li C, Wang H, Liu J, Mu W (2014) Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions. Water 6:2671-2689.
eISSN:2543-9774
ISSN:2451-4225